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An essential step in the mechanisms of action of a large variety
of zinc enzymes, such as carbonic anhydrase, involves reversible
proton transfer which serves to interconvert the aqua and
hydroxide forms of the active sites, [LZn-OH2]2+ and [LZn-
OH]+.1,2 Surprisingly, however, examples of this transformation
for which both partners have been isolated and structurally
characterized are unknown. In this paper, we report the synthesis
and structural characterization of a monomeric zinc aqua complex,
which is obtained by protonation of the hydroxide form of a
synthetic analogue of carbonic anhydrase, and also demonstrate
that protonation inhibits reactivity towards CO2.

Carbonic anhydrase, one of the most extensively studied zinc
enzymes, posseses an active site that is composed of a tetrahedral
zinc center which is coordinated to a water molecule and three
histidine donors [NNN] from the protein backbone.1 The best
small molecule synthetic analogues which structurally mimic this
{[NNN]ZnOHn} (n ) 1, 2) coordination environment are the tris-
(pyrazolyl)hydroborato and tris(imidazolyl)phosphine complexes
[TpBut,Me]ZnOH,3 [TpAr,Me]ZnOH (Ar ) C6H4Pri),4 and{[PimPri,But]-
ZnOH}(ClO4).5,6 To date, however, reactions of these hydroxide
complexes with protic reagents have not yielded isolable zinc aqua
complexes, a principal problem being that the incipient aqua
ligand is readily, and irreversibly,7 displaced by the counterion.8

Indeed, Vahrenkamp has used this method extensively for
preparing a variety of [TpRR′]ZnX complexes; for example, the
reaction of [TpBut,Me]ZnOH3 with p-TolS(O)2OH yields [TpBut,Me]Zn-
OS(O)2Tol.8c

In view of the above formation of [TpRR′]ZnX complexes in
reactions of [TpRR′]ZnOH with HX, it is significant that the
hydroxide ligand in [TpBut,Me]ZnOH may be reversibly protonated
to give a zinc aqua derivative{[TpBut,Me]Zn(OH2)}+. Specifically,
(C6F5)3B(OH2)9-11 is capable of protonating [TpBut,Me]ZnOH to
give an aqua complex{[TpBut,Me]Zn(OH2)]}[HOB(C6F5)3] in
which the water molecule isnot displaced by the counterion
(Scheme 1). The importance of employing the [(C6F5)3BOH]-

counterion to stabilize the zinc aqua moiety is underscored by

the fact that the coordinated water is displaced by addition of
[Bun

4N][I] to give [TpBut,Me]ZnI.12 The use of (C6F5)3B(OH2) as
an acid to obtain a stable zinc aqua complex is also noteworthy
since it has been reported that treatment of both [TpBut,Me]ZnOH
and [TpCum,Me]ZnOH with the alternative acid, HClO4, results in
hydrolytic destruction of the tris(pyrazolyl)borato ligand.8c The
formation of{[TpBut,Me]Zn(OH2)}+ is, as expected, reversible, and
subsequent treatment with Et3N regenerates [TpBut,Me]ZnOH.

The molecular structure of{[TpBut,Me]Zn(OH2)]}[HOB(C6F5)3]
has been determined by X-ray diffraction (Figure 1), thereby
allowing important details of the bonding to be ascertained. Of
particular note, the Zn-O bond [1.937(2) Å] is significantly
longer than that in the parent hydroxide [TpBut,Me]ZnOH [1.850-
(8) Å],3,13 thus providing excellent evidence that the hydroxide
ligand has been protonated.14 Correspondingly, the B-O bond
[1.502(3) Å] is substantially shortened upon deprotonation relative
to that in the aqua complex (C6F5)3B(OH2) [1.608(3) Å],9b,15and
is comparable to that in the isolated [(C6F5)3BOH]- anion (1.49
Å).16-18

The structural study also indicates that{[TpBut,Me]Zn(OH2)]}-
[HOB(C6F5)3] exists as a hydrogen-bonded ion pair, with an O‚‚‚O
separation of 2.480(3) Å.19 In accord with the zinc aqua
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formulation of the structure, the bridging hydrogen is much more
displaced towards the zinc oxygen than towards the boron oxygen
[O(1)-H(3) ) 1.09(4) Å and O(2)-H(3) 1.39(4) Å].20 The
interaction also persists in benzene solution, with the [H3O2]
moiety being characterized byνOH absorptions at 3660, 3637, and
3445 cm-1 in the IR spectrum, of which the lowest energy signal
is attributed to the hydrogen-bonded interaction.

The existence of a hydrogen-bonding interaction is a clear
indication of the acidic nature of the coordinated water molecule
in the{[TpBut,Me]Zn(OH2)]}+ cation. In this regard, it is pertinent
to note that the zinc water ligand at the active site of carbonic
anhydrase also participates in a hydrogen bond with Thr-199;21

the hydrogen-bonding interaction within{[TpBut,Me]Zn(OH2)]}-
[HOB(C6F5)3] thus has analogies to that of the enzyme active
site.

One of the most important notions concerned with the
mechanism of action of carbonic anhydrase is that the coordinated

water is deprotonated prior to reaction with CO2.1,22 However,
such a proposal has not been demonstrated by direct comparison
of the reactivity of a pair of structurally characterized [LZn(OH)]
and [LZn(OH2)]+ complexes with coordination environments that
mimic well the active site of carbonic anhydrase.23,24The isolation
of both [TpBut,Me]ZnOH and its conjugate acid{[TpBut,Me]Zn-
(OH2)]}[HOB(C6F5)3], therefore, provides a unique opportunity
to study such a proposition in a well-defined system. Significantly,
whereas [TpBut,Me]ZnOH is in rapid equilibrium with the bicarbon-
ate derivative [TpBut,Me]ZnOC(O)OH in the presence of CO2,25

its conjugate acid{[TpBut,Me]Zn(OH2)]}[HOB(C6F5)3] does not
react with CO2 under comparable conditions.26 Such direct
comparison provides an excellent demonstration that deprotona-
tion of the zinc-bound water is indeed an essential step in the
mechanism of action of carbonic anhydrase.

In summary, protonation of the zinc hydroxide complex
[TpBut,Me]ZnOH by (C6F5)3B(OH2) yields the aqua derivative
{[TpBut,Me]Zn(OH2)}+, a transformation that results in a lengthen-
ing of the Zn-O bond by ca. 0.1 Å. The protonation is reversible
and treatment of{[TpBut,Me]Zn(OH2)}+ with Et3N regenerates
[TpBut,Me]ZnOH. Consistent with the notion that the catalytic
hydration of CO2 by carbonic anhydrase requires deprotonation
of the coordinated water molecule,{[TpBut,Me]Zn(OH2)}+ is inert
towards CO2, whereas [TpBut,Me]ZnOH is in rapid equilibrium with
the bicarbonate complex [TpBut,Me]ZnOC(O)OH.
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Figure 1. Molecular structure of{[TpBut,Me]Zn(OH2)]}[HOB(C6F5)3] (for
clarity, only a portion of the anion is shown). Selected bond lengths (Å)
and angles (deg): Zn-O(1) 1.937(2), Zn-N(12) 2.023(2), Zn-N(22)
2.007(2), Zn-N(32) 2.025(2), O(1)-H(1) 0.78(4), O(1)-H(3) 1.09(4),
O(2)-H(2) 0.78(4), O(2)-H(3) 1.39(4), O(1)‚‚‚O(2) 2.480(3), B(2)-
O(2) 1.502(3); O(1)-Zn-N(12) 123.01(8), O(1)-Zn-N(22) 119.16(9),
O(1)-Zn-N(32) 119.87(9).
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